Powered by RND
PodcastsTechnologyExperiencing Data w/ Brian T. O’Neill (UX for AI Data Products, SAAS Analytics, Data Product Management)

Experiencing Data w/ Brian T. O’Neill (UX for AI Data Products, SAAS Analytics, Data Product Management)

Brian T. O’Neill from Designing for Analytics
Experiencing Data w/ Brian T. O’Neill  (UX for AI Data Products, SAAS Analytics, Data Product Management)
Latest episode

Available Episodes

5 of 100
  • 170 - Turning Data into Impactful AI Products at Experian: Lessons from North American Chief AI Officer Shri Santhnam (Promoted Episode)
    Today, I'm chatting with Shri Santhanam, the  EVP of Software Platforms and Chief AI Officer of Experian North America. Over the course of this promoted episode, you’re going to hear us talk about what it takes to build useful consumer and B2B AI products. Shri explains how Experian structures their AI product teams, the company’s approach prioritizing its initiatives, and what it takes to get their AI solutions out the door. We also get into the nuances of building trust with probabilistic AI tools and the absolutely critical role of UX in end user adoption.   Note: today’s episode is one of my rare Promoted Episodes. Please help support the show by visiting Experian’s links below:     Links Shri's LinkedIn Experian Assistant | Experian Experian Ascend Platform™ | Experian 
    --------  
    42:33
  • 169 - AI Product Management and UX: What’s New (If Anything) About Making Valuable LLM-Powered Products with Stuart Winter-Tear
    Today, I'm chatting with Stuart Winter-Tear about AI product management. We're getting into the nitty-gritty of what it takes to build and launch LLM-powered products for the commercial market that actually produce value. Among other things in this rich conversation, Stuart surprised me with the level of importance he believes UX has in making LLM-powered products successful, even for technical audiences.     After spending significant time on the forefront of AI’s breakthroughs, Stuart believes many of the products we’re seeing today are the result of FOMO above all else. He shares a belief that I’ve emphasized time and time again on the podcast–product is about the problem, not the solution. This design philosophy has informed Staurt’s 20-plus year-long career, and it is pivotal to understanding how to best use AI to build products that meet users’ needs.   Highlights/ Skip to  Why Stuart was asked to speak to the House of Lords about AI (2:04) The LLM-powered products has Stuart been building recently (4:20) Finding product-market fit with AI products (7:44) Lessons Stuart has learned over the past two years working with LLM-power products (10:54)  Figuring out how to build user trust in your AI products (14:40) The differences between being a digital product manager vs. AI product manager (18:13) Who is best suited for an AI product management role (25:42) Why Stuart thinks user experience matters greatly with AI products (32:18) The formula needed to create a business-viable AI product (38:22)  Stuart describes the skills and roles he thinks are essential in an AI product team and who he brings on first (50:53) Conversations that need to be had with academics and data scientists when building AI-powered products (54:04) Final thoughts from Stuart and where you can find more from him (58:07)   Quotes from Today’s Episode “I think that the core dream with GenAI is getting data out of IT hands and back to the business. Finding a way to overlay all this disparate, unstructured data and [translate it] to the human language is revolutionary. We’re finding industries that you would think were more conservative (i.e. medical, legal, etc.) are probably the most interested because of the large volumes of unstructured data they have to deal with. People wouldn’t expect large language models to be used for fact-checking… they’re actually very powerful, especially if you can have your own proprietary data or pipelines. Same with security–although large language models introduce a terrifying amount of security problems, they can also be used in reverse to augment security. There’s a lovely contradiction with this technology that I do enjoy.” - Stuart Winter-Tear (5:58) “[LLM-powered products] gave me the wow factor, and I think that’s part of what’s caused the problem. If we focus on technology, we build more technology, but if we focus on business and customers, we’re probably going to end up with more business and customers. This is why we end up with so many products that are effectively solutions in search of problems. We’re in this rush and [these products] are [based on] FOMO. We’re leaving behind what we understood about [building] products—as if [an LLM-powered product] is a special piece of technology. It’s not. It’s another piece of technology. [Designers] should look at this technology from the prism of the business and from the prism of the problem. We love to solutionize, but is the problem the problem? What’s the context of the problem? What’s the problem under the problem? Is this problem worth solving, and is GenAI a desirable way to solve it? We’re putting the cart before the horse.” - Stuart Winter-Tear (11:11) “[LLM-powered products] feel most amazing when you’re not a domain expert in whatever you’re using it for. I’ll give you an example: I’m terrible at coding. When I got my hands on Cursor, I felt like a superhero. It was unbelievable what I could build. Although [LLM products] look most amazing in the hands of non-experts, it’s actually most powerful in the hands of experts who do understand the domain they’re using this technology. Perhaps I want to do a product strategy, so I ask [the product] for some assistance, and it can get me 70% of the way there. [LLM products] are great as a jumping off point… but ultimately [they are] only powerful because I have certain domain expertise.” - Stuart Winter-Tear (13:01) “We’re so used to the digital paradigm. The deterministic nature of you put in X, you get out Y; it’s the same every time. Probabilistic changes every time. There is a huge difference between what results you might be getting in the lab compared to what happens in the real world. You effectively find yourself building [AI products] live, and in order to do that, you need good communities and good feedback available to you. You need these fast feedback loops. From a pure product management perspective, we used to just have the [engineering] timeline… Now, we have [the data research timeline]. If you’re dealing with cutting-edge products, you’ve got these two timelines that you’re trying to put together, and the data research one is very unpredictable. It’s the nature of research. We don’t necessarily know when we’re going to get to where we want to be.” - Stuart Winter-Tear (22:25) “I believe that UX will become the #1 priority for large language model products. I firmly believe whoever wins in UX will win in this large language model product world.  I’m against fully autonomous agents without human intervention for knowledge work. We need that human in the loop. What was the intent of the user? How do we get that right push back from the large language model to understand even the level of the person that they’re dealing with? These are fundamental UX problems that are going to push UX to the forefront… This is going to be on UX to educate the user, to be able to inject the user in at the right time to be able to make this stuff work. The UX folk who do figure this out are going to create the breakthrough and create the mass adoption.” - Stuart Winter-Tear (33:42)
    --------  
    1:01:05
  • 168 - 10 Challenges Internal Data Teams May Face Building Their First Revenue-Generating Data Product
    Today, I am going to share some of the biggest challenges internal enterprise data leaders may face when creating their first revenue-generating data product. If your team is thinking about directly monetizing a data product and bringing a piece of software to life as something customers actually pay for, this episode is for you. As a companion to this episode, you can read my original article on this topic here once you finish listening!
    --------  
    38:24
  • 167 - AI Product Management and Design: How Natalia Andreyeva and Team at Infor Nexus Create B2B Data Products that Customers Value
    Today, I’m talking with Natalia Andreyeva from Infor about AI / ML product management and its application to supply chain software. Natalia is a Senior Director of Product Management for the Nexus AI / ML Solution Portfolio, and she walks us through what is new, and what is not, about designing AI capabilities in B2B software. We also got into why user experience is so critical in data-driven products, and the role of design in ensuring AI produces value. During our chat, Natalia hit on the importance of really nailing down customer needs through solid discovery and the role of product leaders in this non-technical work. We also tackled some of the trickier aspects of designing for GenAI, digital assistants, the need to keep efforts strongly grounded in value creation for customers, and how even the best ML-based predictive analytics need to consider UX and the amount of evidence that customers need to believe the recommendations. During this episode, Natalia emphasizes a huge key to her work’s success: keeping customers and users in the loop throughout the product development lifecycle.   Highlights/ Skip to What Natalia does as a Senior Director of Product Management for Infor Nexus (1:13) Who are the people using Infor Nexus Products and what do they accomplish when using them (2:51) Breaking down who makes up Natalia's team (4:05) What role does AI play in Natalia's work? (5:32) How do designers work with Natalia's team? (7:17) The problem that had Natalia rethink the discovery process when working with AI and machine learning applications (10:28) Why Natalia isn’t worried about competitors catching up to her team's design work (14:24) How Natalia works with Infor Nexus customers to help them understand the solutions her team is building (23:07) The biggest challenges Natalia faces with building GenAI and machine learning products (27:25) Natalia’s four steps to success in building AI products and capabilities (34:53) Where you can find more from Natalia (36:49)   Quotes from Today’s Episode “I always launch discovery with customers, in the presence of the UX specialist [our designer]. We do the interviews together, and [regardless of who is facilitating] the goal is to understand the pain points of our customers by listening to how they do their jobs today. We do a series of these interviews and we distill them into the customer needs; the problems we need to really address for the customers. And then we start thinking about how to [address these needs]. Data products are a particular challenge because it’s not always that you can easily create a UX that would allow users to realize the value they’re searching for from the solution. And even if we can deliver it, consuming that is typically a challenge, too. So, this is where [design becomes really important]. [...] What I found through the years of experience is that it’s very difficult to explain to people around you what it is that you’re building when you’re dealing with a data-driven product. Is it a dashboard? Is it a workboard? They understand the word data, but that’s not what we are creating. We are creating the actual experience for the outcome that data will deliver to them indirectly, right? So, that’s typically how we work.” - Natalia Andreyeva (7:47) “[When doing discovery for products without AI], we already have ideas for what we want to get out. We know that there is a space in the market for those solutions to come to life. We just have to understand where. For AI-driven products, it’s not only about [the user’s] understanding of the problem or the design, it is also about understanding if the data exists and if it’s feasible to build the solution to address [the user’s] problem. [Data] feasibility is an extremely important piece because it will drive the UX as well.” - Natalia Andreyeva (10:50) “When [the team] discussed the problem, it sounded like a simple calculation that needed to be created [for users]. In reality, it was an entire process of thinking of multiple people in the chain [of command] to understand whether or not a medical product was safe to be consumed. That’s the outcome we needed to produce, and when we finally did, we actually celebrated with our customers and with our designers. It was one of the most difficult things that we had to design. So why did this problem actually get solved, and why we were the ones who solved it? It’s because we took the time to understand the current user experience through [our customer] interviews. We connected the dots and translated it all into a visual solution. We would never be able to do that without the proper UX and design in that place for the data.” - Natalia Andreyeva (13:16) “Everybody is pressured to come up with a strategy [for AI] or explain how AI is being incorporated into their solutions and platform, but it is still essential for all of my peers in product management to focus on the value [we’re] creating for customers. You cannot bypass discovery. Discovery is the essential portion where you have to spend time with your customers, champions, advisors, and their leads, but especially users who are doing this [supply chain] job every single day—so we understand where the pain point really is for them, we solve that pain, and we solve it with our design team as a partner, so that solution can surface value. ” - Natalia Andreyeva (22:08) “GenAI is a new field and new technology. It’s evolving quickly, and nobody really knows how to properly adapt or drive the adoption of AI solutions. The speed of innovation [in the AI field] is a challenge for everybody. People who work on the frontlines (i.e. product, engineering teams), have to stay way ahead of the market. Meanwhile, customers who are going to be using these [AI] solutions are not going to trust the [initial] outcomes. It’s going to take some time for people to become comfortable with them. But it doesn’t mean that your solution is bad or didn’t find the market fit. It’s just not time for your [solution] yet. Educating our users on the value of the solution is also part of that challenge, and [designers] have to be very careful that solutions are accessible. Users do not adopt intimidating solutions.” - Natalia Andreyeva (27:41) “First, discovery—where we search for the problems. From my experience, [discovery] works better if you’re very structured. I always provide [a customer] with an outline of what needs to happen so it’s not a secret. Then, do the prototyping phase and keep the customer engaged so they can see the quick outcomes of those prototypes. This is where you also have to really include the feasibility of the data if you’re building an AI solution, right? [Prototyping] can be short or long, but you need to keep the customer engaged throughout that phase so they see quick outcomes. Keep on validating this conceptually, you know, on the napkin, in Figma, it doesn’t really matter; you have to keep on keeping them engaged. Then, once you validate it works and the customer likes it, then build. Don’t really go into the deep development work until you know [all of this!] When you do build, create a beta solution. It only has to work so much to prove the value. Then, run the pilot, and if it’s successful, build the MVP, then launch. It’s simple, but it is a lot of work, and you have to keep your customers really engaged through all of those phases. If something doesn’t work [along the way], try to pivot early enough so you still have a viable product at the end.” - Natalia Andreyeva (34:53)   Links Natalia's LinkedIn
    --------  
    37:34
  • 166 - Can UX Quality Metrics Increase Your Data Product's Business Value and Adoption?
    Today I am going to try to answer a fundamental question: how should you actually measure user experience, especially with data products—and tie this to business value? It's easy to get lost in analytics and think we're seeing the whole picture, but I argue that this is far from the truth. Product leaders need to understand the subjective experience of our users—and unfortunately, analytics does not tell us this. The map is not the territory.   In this episode, I discuss why qualitative data and subjective experience is the data that will most help you make product decisions that will lead you to increased business value. If users aren't getting value from your product(s), and their lives aren’t improving, business value will be extremely difficult to create. So today, I share my thoughts on how to move beyond thinking that analytics is the only way to track UX, and how this helps product leaders uncover opportunities to produce better organizational value.  Ultimately, it’s about creating indispensable solutions and building trust, which is key for any product team looking to make a real impact. Hat tip to UX guru Jared Spool who inspired several of the concepts I share with you today.   Highlights/ Skip to  Don't target adoption for adoption's sake, because product usage can be a tax or benefit (3:00) Why your analytical mind may bias you—and what changes you might have to do this type of product and user research work (7:31) How "making the user's life better" translates to organizational value (10:17) Using Jared Spool's roller coaster chart to measure your product’s user experience and find your opportunities and successes (13:05) How do you measure that you have done a good job with your UX? (17:28)  Conclusions and final thoughts (21:06)   Quotes from Today’s Episode Usage doesn't automatically equal value. Analytics on your analytics is not telling you useful things about user experience or satisfaction. Why? "The map is not the territory." Analytics measure computer metrics, not feelings, and let's face it, users aren't always rational. To truly gauge user value, we need qualitative research - to talk to users - and to hear what their subjective experience is. Want *meaningful* adoption? Talk to and observe your users. That's how you know you are actually making things better. When it’s better for them, the business value will follow. (3:12) Make better things—where better is a measurement based on the subjective experience of the user—not analytics. Usable doesn’t mean they will necessarily want it. Sessions and page views don’t tell you how people *feel* about it. (7:39) Think about the dreadful tools you and so many have been forced to use: the things that waste your time and don’t let you focus on what’s really important. Ever talked to a data scientist who is sick of doing data prep instead of building models, and wondering, “why am I here? This isn’t what I went to school for.” Ignoring these personal frustrations and feelings and focusing only on your customers’ feature requests, JIRA tickets, stakeholder orders, requirements docs, and backlog items is why many teams end up building technically right, effectively wrong solutions. These end user frustrations are where we find our opportunities to delight—and create products and UXs that matter. To improve their lives, we need to dig into their workflows, identify frustrations, and understand the context around our data product solutions. Product leaders need to fall in love with the problems and the frustrations—these are the magic keys to the value kingdom. However, to do this well, you probably need to be doing less delivery and more discovery. (10:27) Imagine a line chart with a Y-axis that is "frustration" at the bottom to "delight" at the top. The X-axis is their user experience, taking place over time. As somebody uses your data product to do their job/task, you can plot their emotional journey. “Get the data, format the data, include the data in a tool, derive some conclusion, challenge the data, share it, make a decision” etc. As a product manager, you probably know what a use-case looks like. Your first job is to plot their existing experience trying/doing that use case with your data product. Where are they frustrated? Where are they delighted? Celebrate your peaks/delighters, and fall in love with the valleys where satisfaction work needs to be done. Connect the dots between these valleys and business value. Address the valleys—especially the ones that impede business value—and you’ll be on your way to “showing the value of your data product.” Analytics on your data product won’t tell you this information; the map is not the territory. (13:22) Analytics about your data product are lying to you. They give you the facts about the product, but not about the user. An example? “Time spent” doing a task. How long is too long? 5 minutes? 50? Analytics will tell you precisely how long it took. The problem is, it won’t tell you how long it FELT it took. And guess what? Your customers and users only care about how long it felt it took—vs. their expectation. Sure, at some point, analytics might eventually help—at scale—understand how your data product is doing—but first you have to understand how people FEEL about it. Only then will you know whether 5 minutes, or 50 minutes is telling you anything meaningful about what—if anything—needs to change. (16:17)
    --------  
    26:12

More Technology podcasts

About Experiencing Data w/ Brian T. O’Neill (UX for AI Data Products, SAAS Analytics, Data Product Management)

Is the value of your enterprise analytics SAAS or AI product not obvious through it’s UI/UX? Got the data and ML models right...but user adoption of your dashboards and UI isn’t what you hoped it would be? While it is easier than ever to create AI and analytics solutions from a technology perspective, do you find as a founder or product leader that getting users to use and buyers to buy seems harder than it should be? If you lead an internal enterprise data team, have you heard that a ”data product” approach can help—but you’re concerned it’s all hype? My name is Brian T. O’Neill, and on Experiencing Data—one of the top 2% of podcasts in the world—I share the stories of leaders who are leveraging product and UX design to make SAAS analytics, AI applications, and internal data products indispensable to their customers. After all, you can’t create business value with data if the humans in the loop can’t or won’t use your solutions. Every 2 weeks, I release interviews with experts and impressive people I’ve met who are doing interesting work at the intersection of enterprise software product management, UX design, AI and analytics—work that you need to hear about and from whom I hope you can borrow strategies. I also occasionally record solo episodes on applying UI/UX design strategies to data products—so you and your team can unlock financial value by making your users’ and customers’ lives better. Hashtag: #ExperiencingData. JOIN MY INSIGHTS LIST FOR 1-PAGE EPISODE SUMMARIES, TRANSCRIPTS, AND FREE UX STRATEGY TIPS https://designingforanalytics.com/ed ABOUT THE HOST, BRIAN T. O’NEILL: https://designingforanalytics.com/bio/
Podcast website

Listen to Experiencing Data w/ Brian T. O’Neill (UX for AI Data Products, SAAS Analytics, Data Product Management), Acquired and many other podcasts from around the world with the radio.net app

Get the free radio.net app

  • Stations and podcasts to bookmark
  • Stream via Wi-Fi or Bluetooth
  • Supports Carplay & Android Auto
  • Many other app features
Social
v7.18.3 | © 2007-2025 radio.de GmbH
Generated: 5/29/2025 - 5:55:44 AM